EVALUATION OF TEST FORMULATIONS TO PARKINSON’S DISEASE USING ROTENONE INDUCED ANIMAL MODEL

                                                                            PROTOCOL

evaluation of TEST FORMULATIONS to PARKINSON’S DISEASE USING ROTENONE INDUCED ANIMAL MODEL

1.0  TEST SYSTEM DETAILS:

Species                  : Rattus Norvegicus (Rats)

Strain                    : Albino Wistar

Age                       : 6-8 weeks

Body Wight          : 200-250 g

Sex                        : Male or Female

No. of animals      : 7 /Group

Total animals        : 35+ 7 extra = 42

 

2.0   ALLOCATION OF GROUPS:

Groups

Treatment

Dose; ROA

Number of Animals

G1

Normal Control

Normal saline or 0.25% Na-CMC

7

G2

 

Negative Control

(Rotenone)

with vehicle DMSO + Miglyol 812N

1ml/kg i.p.

7

G3

Reference Drug-

(L-Dopa)

10 mpk; p.o.

7

G4

Test Formulation-1

A1 mpk; p.o.

7

G5

Test Formulation-2

A1 mpk; p.o.

7

 

7 extra animals will be taken extra in each study for the randomization purpose

 

3.0  METHOD:

·       Healthy animals will be selected, randomized based on body weight and divided into 5 different groups consisting of 7 animals each.

*     ROTENONE INDUCED PARKINSONISM DISEASE (PD)

·       The Rotenone solution thus prepared will be administered at 1ml/kg body weight/day intraperitoneally to all the groups till 9th day, except for the normal control group which receives only the vehicle (DMSO+Miglyol 812N).

·       The respective treatment groups will receive their treatment from the day of starting of rotenone injection.

·       During daily handling, animals will be observed for the emergence of PD phenotype.The animals will be assessed for their motor and behavioral scores on day 6, day 9 and day 11.

·       The trial and standard drug treatment will be continued till the animals develop debilitating phenotype or till the 11th day.

·       Animals developing debilitating phenotype – limiting their mobility, feeding or grooming; will be sacrificed and brain samples will be collected from them for further analysis.

 

4.0  END POINT PARAMETER(S):

·       Motor & Behavioral Assessment

a)   Open field test

b)  Pole test

c)   Rearing behavior

d)  Postural instability test

e)   Rotarod test

f)    Tail suspension test   

·       Time taken for the development of debilitating PD phenotype

·       Oxidative stress assessment

·       a) Measuring the extent of lipid peroxidation (LPO) in brain homogenates

·       b) Measurement of reactive oxygen species (ROS) generation in the brain regions

·       Estimation of striatal Dopamine levels

·       Brain histopathological examination.

 

5.0   REFERENCE(S):

1.     Correa M, Wisniecki A, Betz A, Dobson DR, O’Neill MF, O’Neill MJ, et al. The adenosine A2A antagonist KF17837 reverses the locomotor suppression and tremulous jaw movements induced by haloperidol in rats: Possible relevance to parkinsonism. Behav Brain Res. 2004;148:47–54.

2.     Conceição IM, Frussa-Filho R. Effects of a single administration of buspirone on catalepsy, yawning and stereotypy in rats. Braz J Med Biol Res. 1993;26:71–4.

3.     Fernagut PO, Chesselet MF. Alpha-synuclein and transgenic mouse models. Neurobiol Dis. 2004;17: 123–30.

4.     Fleming SM, Delville Y, Schallert T. An intermittent, controlled-rate, slow progressive degeneration model of Parkinson's disease: antiparkinson effects of Sinemet and protective effects of methylphenidate. Behav Brain Res. 2005;156:201–13.

5.     Fleming SM, Zhu C, Fernagut PO, Mehta A, DiCarlo CD, Seaman RL, Chesselet MF. Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone. Exp Neurol. 2004; 187:418–29.

6.     Woodlee MT, Kane JR, Chang J, Cormack LK, Schallert T. Enhanced function in the good forelimb of hemi-parkinson rats: compensatory adaptation for contralateral postural instability? Exp Neurol. 2008;211:511–7.

7.     Fleming SM, Mulligan CK, Richter F, Mortazavi F, Lemesre V, et al. (2011) A pilot trial of the microtubule-interacting peptide (NAP) in mice overexpressing alpha-synuclein shows improvement in motor function and reduction of alpha-synuclein inclusions. Mol Cell Neurosci 46: 597–606.

8.     Duan W, Mattson MP (1999) Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J Neurosci Res 57: 195–206.

9.     Cryan JF, O'Leary OF, Jin SH, Friedland JC et al (2004) Norepinephrine-deficient mice lack responses to antidepressant drugs, including selective serotonin reuptake inhibitors. Proc Natl Acad Sci U S A 101:8186–8191.

10.  Ohkawa H, Ohnishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351-58.

11.  Driver AS, Kodavanti PS, Mundy WR. Age related changes in reactive oxygen species production in rat brain homogenates. Neurotoxicol Teratol. 2000;22:175-81.

12.  Shinomol GK, Muralidhara. Differential induction of oxidative impairments in brain regions of male mice following subchronic consumption of khesari dhal (Lathyrus sativus) and detoxified khesari dhal. Neurotoxicol 2007;28:798-806.

13.  Dalpiaz A, Filosa K, de Capraris P, Conte G, Bortolotti F, Biondi C, Scatturin A, Prasad PD, Pavan B. Molecular mechanism involved in the transport of a prodrug dopamine glycosyl conjugate. Intl J Pharmaceutics 2007;336:133-9.

14.  Na Zhang, Deqiang Dou, Xiaoku Ran and Tingguo Kang. Neuroprotective effect of arctigenin against neuroinflammation and oxidative stress induced by rotenone. RSC Adv., 2018, 8, 2280


END OF DOCUMENT



SHARE

Owner

Hi. I’m Writer of Researchsop.com. ’ ’ Please share these SOPs to all concern pharma people for their development. I like to fullfill the need of curious people. These things inspire me to make things looks better.

  • Image
  • Image
  • Image
  • Image
  • Image
    Blogger Comment
    Facebook Comment

0 comments:

Post a Comment